Deformation quantization of almost Kähler models and Lagrange-Finsler spaces
نویسندگان
چکیده
منابع مشابه
Deformation Quantization of Almost Kähler Models and Lagrange–Finsler Spaces
Finsler and Lagrange spaces can be equivalently represented as almost Kähler manifolds endowed with a metric compatible canonical distinguished connection structure generalizing the Levi Civita connection. The goal of this paper is to perform a natural Fedosov– type deformation quantization of such geometries. All constructions are canonically derived for regular Lagrangians and/or fundamental ...
متن کاملEinstein Gravity as a Nonholonomic Almost Kähler Geometry, Lagrange–finsler Variables, and Deformation Quantization
A geometric procedure is elaborated for transforming (pseudo) Riemanian metrics and connections into canonical geometric objects (metric and nonlinear and linear connections) for effective Lagrange, or Finsler, geometries which, in their turn, can be equivalently represented as almost Kähler spaces. This allows us to formulate an approach to quantum gravity following standard methods of deforma...
متن کاملGeneralized Lagrange Transforms: Finsler Geometry Methods and Deformation Quantization of Gravity
We propose a natural Fedosov type quantization of generalized Lagrange models and gravity theories with metrics lifted on tangent bundle, or extended to higher dimension, following some stated geometric/ physical conditions (for instance, nonholonomic and/or conformal transforms to some physically important metrics or mapping into a gauge model). Such generalized Lagrange transforms define cano...
متن کاملFinsler Connections in Generalized Lagrange Spaces
The Chern–Rund connection from Finsler geometry is settled in the generalized Lagrange spaces. For the geometry of these spaces, we refer to [5]. Mathematics Subject Classification: 53C60
متن کاملFedosov Quantization of Lagrange–Finsler and Hamilton–Cartan Spaces and Einstein Gravity Lifts on (Co) Tangent Bundles
We provide a method of converting Lagrange and Finsler spaces and their Legendre transforms to Hamilton and Cartan spaces into almost Kähler structures on tangent and cotangent bundles. In particular cases, the Hamilton spaces contain nonholonomic lifts of (pseudo) Riemannian / Einstein metrics on effective phase spaces. This allows us to define the corresponding Fedosov operators and develop d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2007
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.2821249